

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

REMOTE APPLICATION SUPPORT IN A MULTI
LEVEL ENVIRONMENT

by

Robert C. Cooper

March 2005

 Thesis Co-Advisor: Thuy D. Nguyen
 Thesis Advisor: Cynthia E. Irvine

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2005

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Remote Application Support In A Multilevel Environment
6. AUTHOR(S) Robert C. Cooper

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The use of specialized single-level networks in current military operations is inadequate to meet the need to share

information envisioned by the Global Information Grid (GIG). Multilevel security (MLS) is a key Information Assurance
enabler for the GIG vision. The Monterey Security Architecture (MYSEA), a distributed MLS network, eliminates the need to
use separate equipment to connect to many networks at different classification levels. It allows users to view data at different
sensitivities simultaneously. MYSEA also allows commercial software and hardware to be used at clients.

To address the threat of residual data on the client after a user session change in security state, the MYSEA clients
are required to be “stateless”, i.e., there is no non-volatile writable memory. Hence the MYSEA server must provide the clients
with the ability to execute server-resident client-side applications to access data at different security levels over the MLS Local
Area Network (LAN). The MYSEA server currently does not support such capability. This thesis addresses this limitation. A
new trusted process family is introduced to provide a pseudo-socket interface for the single level remote application to access
the MLS LAN interface. Detailed design specifications were created to facilitate implementation of the remote application
support.

15. NUMBER OF
PAGES

77

14. SUBJECT TERMS

Multilevel Security (MLS), Information Assurance (IA), Monterey Security Architecture (MYSEA),
Client-Side Remote Application, Trusted Remote Session Management 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

REMOTE APPLICATION SUPPORT IN A MULTI LEVEL ENVIRONMENT

Robert C. Cooper
Lieutenant, United States Navy

B.S., Rensselaer Polytechnic Institute, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2005

Author: Robert C. Cooper

Approved by: Cynthia E. Irvine, Ph.D.

Thesis Advisor

Thuy D. Nguyen
Co-Advisor

Peter J. Denning, Ph.D.
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The use of specialized single-level networks in current military operations is

inadequate to meet the need to share information envisioned by the Global Information

Grid (GIG). Multilevel security (MLS) is a key Information Assurance enabler for the

GIG vision. The Monterey Security Architecture (MYSEA), a distributed MLS network,

eliminates the need to use separate equipment to connect to many networks at different

classification levels. It allows users to view data at different sensitivities simultaneously.

MYSEA also allows commercial software and hardware to be used at clients.

To address the threat of residual data on the client after a user session change in

security state, the MYSEA clients are required to be “stateless”, i.e., there is no non-

volatile writable memory. Hence the MYSEA server must provide the clients with the

ability to execute server-resident client-side applications to access data at different

security levels over the MLS Local Area Network (LAN). The MYSEA server currently

does not support such capability. This thesis addresses this limitation. A new trusted

process family is introduced to provide a pseudo-socket interface for the single level

remote application to access the MLS LAN interface. Detailed design specifications

were created to facilitate implementation of the remote application support.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION FOR STUDY ..1
B. OBJECTIVE ..2
C. ORGANIZATION OF THESIS ...2

II. BACKGROUND ..3
A. INTRODUCTION..3
B. MONTEREY SECURITY ARCHITECTURE (MYSEA)...........................3

1. MYSEA Server...3
2. MYSEA Client..4
3. Single Level Networks ...4

C. XTS-400 SPECIFICS...4
1. TCP/IP Privileged Ports ..5
2. Trusted and Untrusted Processes ...5
3. System Calls..5

D. PRE-EXISTING DESIGN SPECIFICATION/IMPLEMENTATION6
1. Overview ...6
2. Databases ..8

a. Allowed Trusted Path Extension (TPE) Database...................9
b. User Database ...9
c. Allowed Protocols Database ...10
d. Pseudo-Socket (PSKT) Map Database10
e. Pseudo-Socket (PSKT) Database..11
f. Database Initialization..12

3. Processes ...12
a. Trusted Path Server (TPS) Parent Process............................12
b. TPS Child Process...13
c. Secure Session Daemon (SSD)...13
d. Secure Session Server (SSS) Parent Process13
e. SSS Child Process ...14
f. Application Protocol Server (APS)...14

4. Other Modules..15
a. Semaphore...15
b. User Identification and Authentication15
c. Buffer IO ...15
d. Privileges ...15
e. Shared Memory...16
f. Utility ...16

III. CONCEPT OF OPERATIONS AND REQUIREMENTS17
A. INTRODUCTION..17
B. CONCEPT OF OPERATIONS..17

 viii

C. TOP-LEVEL USER REQUIREMENTS...17
D. OPERATIONAL CONSTRAINTS..18
E. ASSUMPTIONS...18
F. REQUIREMENTS OVERVIEW...18

1. Trusted Remote Session Server (TRSS) ..18
2. Remote Application (RA) ..19
3. Modification to Existing Modules...20

G. FUNCTIONAL REQUIREMENTS...20

IV. REMOTE APPLICATION SUPPORT HIGH-LEVEL DESIGN........................23
A. INTRODUCTION..23
B. METHODOLOGY ..23
C. DESIGN OVERVIEW...24
D. NEW DATABASE MODULES..26

1. Database Initialization...26
2. Database Overview ..27
3. Remote Application Pseudo-Socket (RAPSKT) Map Database....28
4. Remote Application Pseudo-Socket (RAPSKT) Database.............29
5. Remote Connection Database ...30
6. Peer Level Database...31
7. Source Address Binding Database ...32
8. Cleanup Database ..32

E. NEW PROCESS MODULES ...33
1. Trusted Remote Session Server (TRSS) ..33

a. TRSS Parent Process ..33
b. TRSS Child Process ..36

2. Remote Application (RA) ..37
3. Synchronization..37

F. SUPPORTED SOCKET FUNCTIONS ...38
1. Common Characteristics...39
2. Peer Level Checks ..40
3. Explicit Binding..40
4. RAPSKT Database Allocation and Deallocation40
5. Remote Connection Updates...41
6. Select..41
7. Variable Parameters..42
8. Fork ...42

G. CHANGES TO EXISTING MODULES ...43
1. TPS Parent Process / SSD ...43
2. TPS Child Process / SSS Child Process..43
3. SSS Parent Process ..44
4. User Database...44

H. SUMMARY ..44

V. FUTURE WORK AND CONCLUSION ...45
A. INTRODUCTION..45
B. FUTURE WORK...45

 ix

1. Programming and Testing ..45
a. Code Testing..45
b. Stress Testing...46

2. Design Improvements ..46
a. Configurable Databases..46
b. Source Address Binding Database/Peer Level Database46
c. RAPSKT Map Database/PSKT Map Database......................47
d. Cleanup..47
e. Remote Connection Database...47

C. CONCLUSION ..47

APPENDIX DESIGN SPECIFICATION ...49

LIST OF REFERENCES..53

INITIAL DISTRIBUTION LIST ...55

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Pre-Existing Design Overview ..7
Figure 2. Pre-Existing Process / Database Relationships..9
Figure 3. Design Overview ...24
Figure 4. Process / Database Relationships...28
Figure 5. TRSS Parent Process Flow Diagram ...34
Figure 6. TRSS Child Process Flow Diagram...36
Figure 7. Fork Processing Sequence ...42

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Database Initialization ...12
Table 2. Database Initialization Summary...26
Table 3. Supported Socket Functions ..39

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ABBREVIATIONS AND ACRONYMS

APS Application Protocol Server

DAC Discretionary Access Controls

MAC Mandatory Access Controls

MLS Multilevel Security

MYSEA Monterey Security Architecture

PSKT Pseudo-Socket

RA Remote Application

RAPSKT Remote Application Pseudo-Socket

SARP Secure Attention Request Packet

SSD Secure Session Daemon

SSS Secure Session Server

STOP Secure Trusted Operating Program

TCB Trusted Computing Base

TPE Trusted Path Extension

TPS Trusted Path Server

TRSS Trusted Remote Session Server

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

I would like to thank my thesis advisors, Dr. Cynthia Irvine and Thuy Nguyen, for

all their support on this project. I would also like to thank Thuy Nguyen, David Shifflett

and Jean Khosalim for their guidance and insight with the design specification for the

remote application support and assistance with the XTS-400 system.

This work was sponsored in part by the Office of Naval Research and the

National Reconnaissance Office. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author and do not necessarily

reflect the views of either the Office of Naval Research or the National Reconnaissance

Office.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. MOTIVATION FOR STUDY
Currently, multiple networks running at different security levels must be used to

protect information with different classifications. To view data at different classification

levels, it is necessary to have separate equipment to connect to all different networks, or

to move data from the lower classification levels to the highest level network. The

multilevel security (MLS) paradigm eliminates the need for maintaining specialized

networks.

The vision of the Global Information Grid (GIG) is to provide a globally

interconnected network-centric information environment in order to afford information

superiority to the warfighter [1]. This network will require a high-level of information

assurance to protect information with different classifications. This information needs to

continue to be protected as it is sent remotely to the warfighter in the battlefield. The use

of MLS in the GIG is also more efficient than using specialized networks running at

different security levels.

The Monterey Security Architecture (MYSEA) MLS network is currently being

developed to provide a high assurance system that enforces multilevel security policies.

The design includes a limited but sufficient number of high-assurance elements and

commercial low-assurance elements. The protection mechanisms ensure that users can

only access information that they are currently authorized to access. It also allows

commercial software and hardware to be used at clients, thus making available to users

the unmodified computing functionalities to which they are accustomed. [2]

However, not all the requirements necessary for the MYSEA MLS network have

currently been met. There is a need for MYSEA clients to have the capability to run

remote client-side applications on the MYSEA MLS server over the MYSEA MLS Local

Area Network (LAN). This remote application support is necessary to allow “stateless”

clients to use server-resident applications to access data at different security levels.

2

B. OBJECTIVE
The objective of this research was to complete a detailed design for the remote

application support. Detailed design specifications, based on the pre-existing MLS LAN

design developed in previous work, were produced. In addition, a sketch of a testing

methodology using the Trivial File Transfer Protocol (TFTP) client program was

investigated.

A number of criteria were considered when designing the remote application

support. The remote application services had to be decomposed into well-defined

modules. The design would undergo extensive reviews by the MYSEA engineering

team. The amount of trusted code necessary for the support was to be only what is

necessary and sufficient for the remote application support to function. The remote

application support would allow the remote application to be used with a limited number

of changes.

C. ORGANIZATION OF THESIS
This thesis is organized as follows: Chapter I gives a brief introduction to the

project including a brief MYSEA introduction, the high level objective of this work, and

the motivation behind this research. Chapter II provides the background for this work.

This includes a description of the MYSEA architecture, an overview of the existing

MYSEA design and information on XTS-400 restrictions and features that affect the

design. Chapter III describes the overall concept of how the remote application support

will operate. It also defines the functional requirements that the design must satisfy.

Chapter IV describes how the remote application support was designed and how the new

components interact with the pre-existing ones. Chapter V provides some possible

enhancements which could be added to the design and some suggestions for

implementation and testing. It then concludes with a few final thoughts on the project.

Appendix A lists the contents of the updated design specifications.

3

II. BACKGROUND

A. INTRODUCTION
This chapter contains background information on the Monterey Security

Architecture (MYSEA), the pre-existing modules in the Multilevel Security (MLS) Local

Area Network (LAN) design and the XTS-400.

B. MONTEREY SECURITY ARCHITECTURE (MYSEA)
The Monterey Security Architecture (MYSEA) provides a distributed network

architecture which includes a limited but sufficient number of high-assurance elements

for enforcing multilevel security policies. The majority of the components come from

low-assurance commercial elements. The architecture consists of three main

components: MYSEA Servers, MYSEA Clients and pre-existing single level networks.

The MYSEA server and MYSEA clients co-exist on an MLS Local Area Network (LAN)

[2].

1. MYSEA Server
The MYSEA server runs on a DigitalNet XTS-400 Trusted Computer System and

includes both a Trusted Computing Base (TCB) and untrusted policy-aware Application

Protocol Servers (APS). The DigitalNet Secure Trusted Operating System (STOP),

which enforces multilevel security policies, forms the basis of the TCB. The

functionality of the XTS-400 TCB has been extended to include multilevel trusted path

services and multilevel secure session services. The trusted path services are used to

support trusted remote authentication by providing a trusted mechanism for

communication between the client and the server. The secure session services are used to

start untrusted APSs and client-side remote applications. The secure session services

assign the APSs and RAs the security level that has been negotiated through the trusted

path service mechanism.

The trusted path services and secure session services are currently provided by the

Trusted Path Server (TPS) and Secure Session Server (SSS) respectively. More detail on

both of these servers and the APS can be found in Section D below.

4

2. MYSEA Client
MYSEA clients are untrusted commercial-off-the-shelf personnel computers.

Since the intent is for users to be able to log into the server at different security levels, the

clients must be stateless in order ensure that object reuse requirements are met, i.e. that

no information related to the previous security level remains on the untrusted PC. The

operating system and applications are loaded into volatile RAM from a non-writeable

source with user preferences stored on the MYSEA server. The client connects to the

MYSEA server using a Trusted Path Extension (TPE) located at each client. The TPE

provides a secure unforgettable connection between the MYSEA client and server which

does not depend upon the security of the MYSEA clients.

The network interface on the server connected to the MYSEA clients is

configured to the level of the MLS LAN. This means that any process running on the

server that requires access to this network interface will also have to run at the level of

the MLS LAN. The pre-existing processes that need to run at this level include the TPS

Parent Process, the TPS Child Process, the SSS Parent Process and the SSS Child

Process. The TRSS Parent and Child Processes described in Chapter IV will also need to

run at this level.

3. Single Level Networks
Pre-existing single level networks operating at different security levels are

connected to the MYSEA server either through a separate single level network interface

or via a multilevel interface. In the first case, a Trusted Channel Module (TCM) is used

to provide a secure connection between the MYSEA server and multiple single level

networks. In addition, high assurance encryption devices can also be used, if required.

In the future, users on single level networks will have access to content on the MYSEA

server and MYSEA clients will have access to content on the single level networks

without the use of middleware web portal services.

C. XTS-400 SPECIFICS
Information on the XTS-400 can be found in a number of references including a

trusted facility manual [3], a programmer’s guide [4] and a user’s manual [5]. This

section discusses some of the XTS-400 specifics which affect the design specification.

5

1. TCP/IP Privileged Ports
The XTS-400 restricts normal user programs from using TCP/IP privileged ports.

Only processes whose process identifier equals the network user identifier can use these

privileged ports. Only trusted processes may be given the privilege to change the user

identifier on the XTS-400 system [3].

This restriction greatly influenced the design of the MYSEA server software.

Trusted processes were introduced to service TCP/IP privileged ports on behalf of the

APS and RA Processes. This is because the APSs and RAs execute at the session level of

the logged in TPE and do not have the privilege to change the user identifier, they cannot

use privileged ports directly. Allowing the APSs and RAs to change user identifiers

would require them all to be trusted processes which would increase the amount of

trusted code necessary on the system.

2. Trusted and Untrusted Processes
Trusted processes on the XTS-400 are able to manipulate Trusted Computing

Base (TCB) databases or have privileges which exempt the process from access control

rules [3].

The MYSEA server design utilizes these XTS-400 features in order to implement

the MYSEA-specific confidentiality and integrity security policies. The SSD, the SSS

and the TPS are all trusted processes since they require specific privileges which are

listed in the process Section D below. The Trusted Remote Session Server (TRSS) will

also need to be a trusted process as described in Chapter IV.

3. System Calls
Many of the standard Linux calls are available on the XTS-400 and can be used

by programs running that are hierarchically dependent on the STOP. There are also

XTS-400 specific system calls and some of these are only available to trusted processes.

The Privileges Module, described in Section D, uses some of the XTS-400 specific calls

that can only be used by trusted processes to change privileges. In addition, some system

calls have additional functionality when called by a trusted process. For example, a

system call which reads an object may provide the ability to read objects at different

security levels when invoked by trusted processes [4].

6

D. PRE-EXISTING DESIGN SPECIFICATION/IMPLEMENTATION
Many of the modules in the pre-existing design originated from the work done by

BryerJoyner and Heller [6]. Their work contains the requirements, design and

implementation for the original User Identification and Authentication, Buffer IO,

Semaphore, Privileges, Shared Memory, Utility, Pseudo-Socket (PSKT), Trusted Path

Server (TPS) and Secure Session Server (SSS) modules. These modules have all been

changed, expanded and redesigned multiple times. The changes were reflected in an

updated design specification draft [7]. The draft also added the Allowed Protocols,

Allowed Trusted Path Extension (TPE), PSKT Map, User and Secure Session Daemon

(SSD) modules. The most recent version of the design specification includes the new

design for client-side remote application support and additional details on the pre-existing

modules. The remainder of this section reviews the high-level details of the various pre-

existing modules.

1. Overview
The diagram below depicts the sequence of events that take place when a user

wants to access an application server running on the MYSEA server.

7

Figure 1. Pre-Existing Design Overview

The TPS family of processes, including the TPS Parent and TPS Child, is trusted.

The TPS Child Process requires the privilege to access system identification and

authentication information.

The SSS family of processes, including the SSD, the SSS Parent and SSS Child,

is also trusted. The privilege set for this family of processes includes the ability to

change the user identifier of the process and MAC/DAC exemption. Both privileges are

invoked by the SSD Process to cleanup up any left over PSKT Databases during startup

that could be at any user/session level. The SSS Child Process invokes both privileges to

create the PSKT Database used for communications between the SSS Child Process and

APS Process. The SSS Child Process also invokes the MAC/DAC exemption privilege

to access the PSKT Database since the SSS Child Process normally runs at the level of

the MLS LAN, which allows access to the network interface card.

8

When the MYSEA server starts, the TPS Parent Process and SSD begin

execution. After initialization the TPS Parent Process waits for trusted path connection

requests. The SSD creates a SSS Parent Process to handle connection requests for each

protocol server to be run on the MYSEA server.

When the user desires to access one of the application servers, the user must first

invoke the Secure Attention Key on the Trusted Path Extension (TPE) device, which

establishes a secure connection with the server. The TPE is then used to login to the

MLS server by entering a user name and password in response to prompts issued by the

server. A TPS Child Process is created and it uses its privilege to access system

identification and authentication information to verify the user name and password. Still

using the TPE, the user then chooses an initial session level. The session is finally started

by issuing the run command on the TPE device. After the session-level connection

between the MLS server and TPE is established, the client system is permitted to send

data to and receive information from the server via the TPE.

The client can now, for instance, send a request for a web page to the MYSEA

server. The SSS Parent Process receives this request and starts an SSS Child Process to

receive further http protocol requests from the client. The SSS Child Process uses its

privileges to create a PSKT Database to be used for communications between the SSS

Child Process and the HTTP server (httpd). The SSS Child Process starts an httpd to

handle the HTTP request. The httpd process communicates the results of the request

back to the client via the SSS Child Process using the PSKT Database.

2. Databases
The following databases were initially designed to store the data used by the TPS

and SSS: Allowed TPE Database, User Database, Allowed Protocols Database, PSKT

Map Database and PSKT Database. The diagram below depicts which databases are used

by which process during runtime. The type of access (read and/or write) is also included

in the diagram. An overview of each database follows.

9

Figure 2. Pre-Existing Process / Database Relationships

a. Allowed Trusted Path Extension (TPE) Database
The Allowed Trusted Path Extension (TPE) Database contains a list of

unique identifiers of authorized TPEs. The database is statically configured by an

administrator before starting the MYSEA server. The TPS Parent Process uses this

database to determine if a TPE is allowed to login to the system.

b. User Database
The User Database is used to keep track of the TPEs that are currently

logged into a system. Entries in the database are dynamically updated during runtime.

Each entry in the database associates a TPE identifier to the user identifier logged in from

that TPE and the session level of the login.

10

The TPS Child Process has read/write access to the database. When a user

logs into the MLS LAN from a TPE, the TPS Child Process adds an entry to the database.

The session level is updated if the user changes session levels. The TPS Child Process

also removes the entry from the database when the user logs out of the system.

The SSS Parent Process has read access to the database. The SSS Parent

Process uses the database to determine the user identifier and session level logged in from

a TPE when the process receives a protocol connection request.

c. Allowed Protocols Database
The Allowed Protocols Database contains a list of application protocols

that are started by the MLS server during startup. The database is statically configured

by an administrator before starting the MYSEA server. Each entry in the database

contains an identifier for the protocol, the port number used for listening to requests and a

path to the executable for the service. The SSD uses this database during startup to

determine which protocols need to be supported. The SSD starts a SSS Parent Process

for each protocol in the database.

d. Pseudo-Socket (PSKT) Map Database
The Pseudo-Socket (PSKT) Map Database maps a user ID and session

level to a shared memory key which is used to find the shared memory segment that

contains a Pseudo-Socket Database. Entries in the database are dynamically updated

during runtime. The entries keep track of which shared memory locations are being used

for communications between different SSS Child Process and Application Protocol

Server (APS) Process pairs.

In the original design, the SSS Child Process had read/write access to the

database. When an SSS Child Process was started to handle protocol server requests

from a TPE, the SSS Child Process would reserve a PSKT handle in the database by

assigning a handle to a user ID/session level. This handle would then be used to create a

PSKT Database for communications between the SSS Child Process and APS Process

pairs. The changes made in the new design can be found in Section G of Chapter IV.

11

The APS Processes also have read access to the database. An APS

Process uses the database to determine the shared memory key of the PSKT Database that

it will use for communications with the appropriate SSS Child Process that provides

access to the network interface card.

Locking is used to ensure exclusive access to the database when a PSKT

handle is allocated. This prevents the possible allocation of one PSKT handle to more

than one SSS Child Process.

e. Pseudo-Socket (PSKT) Database
The Pseudo-Socket (PSKT) Database provides the communications

interface between each SSS Child Process and APS Process pair. Entries in the database

are dynamically updated during runtime. Each entry in the database includes a SSS Child

Process identifier, APS Process identifier, network address of the client workstation,

network address of the server, an in use flag field, a APS status field and two buffers.

The in use flag marks entries in the database that are currently being used by a SSS Child

Process/APS Process pair. The APS status field keeps track of whether the entry is

currently initializing, done or ready. The two buffers are circular buffers used to pass the

data stream between processes. One is used to pass the data stream from the server to the

client and the other is used to pass the data stream from the client to the server.

The SSS Child Processes and APS Processes have read/write access to the

database. When the SSS Child Process receives data from the client on a socket, the data

is written into the client to server buffer. The APS Process then retrieves the data from

the buffer for use by the APS. Output data from the APS is written into the server to

client buffer. The SSS Child Process then reads the data in the buffer and sends the data

to the client through the socket.

Locking is used to ensure exclusive access to the database during

allocation of an entry in the database. This prevents the possible allocation of a PSKT to

more than one SSS Child Process.

12

f. Database Initialization
The table below summarizes the existing databases and the processes that

are responsible to initialize those databases. New databases introduced in the new design

are summarized in Chapter IV. It also states which databases are statically configured

and which use shared memory.

Database Process Frequency Statically

Configured
Shared
Memory

Allowed Protocols SSD System-Wide
(once on system
startup)

Y N

Allowed Trusted Path
Extension (TPE)

TPS Parent System-Wide Y N

PSKT SSS Child Per TPE User/
Session (every
time a user/session
is established)

N Y

PSKT Map SSD System-Wide N N
User TPS Parent System-Wide N Y

Table 1. Database Initialization

Shared memory is used only for databases that are accessed by multiple

processes. The two statically configured databases (Allowed Protocols Database and

Allowed TPE Database) do not use shared memory. They are both read from files into

memory by the process listed in the table. The PSKT Map Database is a runtime

database which currently uses a shared flat file for implementation instead of shared

memory. The PSKT Database and User Database are both runtime databases that use

shared memory. The initialization of the Pseudo-Socket Map Database has been changed

in the new design as discussed in Chapter IV.

3. Processes

a. Trusted Path Server (TPS) Parent Process
The Trusted Path Server (TPS) Parent Process runs during the startup of

the MLS server as a system daemon. The TPS Parent Process determines whether each

trusted path connection received from the TPE will be accepted. When the TPS Parent

Process receives a trusted path connection, it checks for the TPE identifier in the Allowed

13

TPE Database. The TPS Parent Process forks a TPS Child Process to handle the

connection if the Allowed TPE Database contains the TPE identifier. The TPS Parent

Process must run at the level of the MLS LAN since it requires access to the network

interface card.

b. TPS Child Process
The TPS Child Process takes over the trusted path connection once the

TPS Parent Process has accepted the connection. The child handles all trusted path

communications from the TPE including login, change session level, run and logout.

When the TPS Child receives data from the client on the connection, the process first

checks to ensure that the data is a Secure Attention Request Packet (SARP). The TPS

Child then reads and processes the command. The output is sent back to the client on the

connection. The TPS Child requires the privilege to access system identification and

authentication information and uses the User Identification and Authentication Module to

verify a username and password. The TPS Child Process also runs at the level of the

MLS LAN. The TPS Child Process maintains the information in the User Database by

associating each logged in TPE identifier with the user ID/session level.

c. Secure Session Daemon (SSD)
The Secure Session Daemon (SSD) is another process that runs during

startup of the MLS server as a system daemon. The SSD reads in the static Allowed

Protocols Database from a file and uses the execution path in each entry to start a SSS

Parent Process for each protocol found in the database. The SSD must run at the level of

the MLS LAN since the child it creates must run at that level in order to access the MLS

LAN.

In the pre-existing design, the SSD requires privileges to: 1) read/write all

secret and integrity levels, 2) bypass discretionary access checking and 3) change its user

identifier. These privileges allow the SSD to clean up any left over PSKT Databases that

could be at any user/session level. However, this function has been moved to the TPS

Parent Process as described in Chapter IV.

d. Secure Session Server (SSS) Parent Process
The Secure Session Server (SSS) Parent Process validates any requests

received from clients for services offered by APSs. When the SSS Parent Process

14

receives a request, it first determines if the request was received from a valid TPE by

verifying that the TPE is in the User Database. In the new design described in Chapter

IV, the SSS Parent also checks for a valid remote connection in the Remote Connection

Database if the TPE cannot be found. If a valid session or valid remote connection is

found, the SSS Parent process forks a SSS Child Process to handle additional requests on

the connection. Otherwise, the connection is terminated.

The SSS Parent Process must run at the level of the MLS LAN since it

requires access to the network interface card. The SSS Parent Process requires the XTS-

400 privilege to change the user identifier to the network user identifier to access

restricted ports.

e. SSS Child Process
The Secure Session Server (SSS) Child Process creates an APS Process to

service the client. The SSS Child Process then passes data between the client and the

APS. Any data received on the socket is passed to the APS through using the PSKT

Database. Any data placed in the PSKT Database by the APS is sent out on the socket by

the SSS Child.

The SSS Child Process also runs at the level of the MLS LAN, and

requires the MAC/DAC exemption and user identifier change privileges. The SSS Child

Process normally runs at the level of the MLS LAN to access the network interface card,

but it also needs to be able to access the PSKT Database being used for communications

with the APS. In order to do this, the SSS Child Process must be exempt from

MAC/DAC restrictions. The SSS Child Process also initializes the PSKT Database. This

database is created at a specific user ID/session level which requires a change in user

identifier in addition to the MAC/DAC exemption.

f. Application Protocol Server (APS)

Each Application Protocol Server (APS) handles the server side of a

client/server protocol. These servers are untrusted and must use the PSKT interfaces to

communicate with the socket connected to the client via the SSS Child Process. The

source code of each server needs to be modified to use the PSKT interface. The handle

needed to attach to the shared memory is retrieved from the PSKT Map Database.

15

A number of APSs have already been prototyped in other works. These

include an Internet Message Access Protocol (IMAP) mail server [8] which was

examined again [9], a Simple Mail Transfer Protocol (SMTP) mail server, Sendmail [10]

and a Hypertext Transfer Protocol (HTTP) web server [11].

4. Other Modules

a. Semaphore
The Semaphore Module provides interfaces used to lock various

databases. When a database is initialized, a semaphore is created for the module that

manages the database. The semaphore identifier is opened by each additional process

that accesses the same database. The PSKT Map Module and the PSKT Module depend

on this module. The following new modules described in Chapter IV also depend on this

module for locking: Remote Connection Module, Remote Pseudo-Socket (RAPSKT)

Map Module, RAPSKT Module and Cleanup Module.

b. User Identification and Authentication
The User Identification and Authentication Module manages access to

user identification and authentication functions provided by the XTS-400. The two

interfaces included are used by the TPS Child Processes. The first allows the TPS Child

Process to determine if a username and password sent via the TPE are valid. The second

allows the TPS Child to determine if the username/session level pair is valid.

c. Buffer IO
The Buffer IO Module is used to manage a circular buffer. The PSKT

Module depends on this module to manage the two buffers included in each entry of the

database.

d. Privileges
The Privileges Module manages access to privilege granting and revoking

functions provided by the XTS-400. Only privileges that are predetermined can be

enabled by each process. Interfaces are provided to disable all privileges previously

granted and to enable each of the following privileges:

• Read/write all secrecy and integrity levels and bypass discretionary
access checking (MAC/DAC exemption)

• Perform identification and authentication checking

• Change owner/group attributes of the current process

16

• Change access class of an object

• Change mandatory access of an object

• Read objects with lower integrity

The SSD, the SSS Parent and Child, the TPS Parent and Child, and the

User Identification and Authentication Module depend on the Privileges Module. The

Trusted Remote Session Server (TRSS) Parent and Child described in Chapter IV also

use the module.

e. Shared Memory
The Shared Memory Module provides interfaces that simplify the use of

shared memory management functions provided by the XTS-400. The functions in the

module allow a process to create, attach to, detach from and remove shared memory

blocks. When a process attaches to a database in shared memory, it uses the shared

memory key associated with the database to retrieve a pointer to a database in shared

memory that has already been initialized. A process detaches to release the shared

memory resources which are still being used by other processes. The User Module and

PSKT Module depend on the Shared Memory Module. The following new modules

described in Chapter IV also depend on this module: Remote Connection Module,

Remote Pseudo-Socket (RAPSKT) Map Module, RAPSKT Module, Cleanup Module,

Peer Level Module and Source Address Binding Module.

f. Utility
The Utility Module contains a variety of utility functions used for

retrieving the access class of a process, comparing two access classes to determine if a

read or write is allowed, evaluating a test condition (similar to ‘assert’ in UNIX) and

debugging. All modules depend on this module except the Utility Module.

In the next chapter, the requirements for remote application support are

discussed and the functional requirement identified.

17

III. CONCEPT OF OPERATIONS AND REQUIREMENTS

A. INTRODUCTION
The Monterey Security Architecture (MYSEA) server described in Chapter II

currently does not have support to allow MYSEA thin clients to run remote applications

on the multilevel secure (MLS) server over the MLS LAN. The goal of the new design is

to add the necessary secure services to provide this remote application support. The

remainder of this chapter discusses the concept of operations for the user and the

requirements, constraints and dependencies that were considered during development of

the design specification.

B. CONCEPT OF OPERATIONS
When the user desires to use an application with remote application (RA) support

on the MLS server, the user must first invoke the secure attention key on the Trusted Path

Extension (TPE) device, which establishes a secure connection with the server. The TPE

is then used to actually login to the MLS server by entering a user name and password in

response to prompts issued by the server. Still using the TPE, the user then chooses an

initial session level. The session is finally started by issuing the run command on the

TPE device. After the session-level connection between the MLS server and TPE is

established, the client system is permitted to send and receive information from the server

via the TPE. Now that the user has access to the MLS server, a web browser may be

opened up on the client. A request is sent to the MLS web server to get the web page

containing a list of RAs that can be run by the client. One of the links displayed in the

web browser can then be chosen to start a specific RA.

C. TOP-LEVEL USER REQUIREMENTS

The design of the remote application (RA) support is based on the following top-

level user requirements:

• The RA shall be able to communicate with the local MLS server, a remote
MLS server and a RA server.

• The remote application shall be appropriately bound to the authenticated
user’s session.

• The user shall be able to launch the RA from the client.

18

• The MLS server shall be able to support both Unix/Linux and Microsoft
Windows clients.

• The design shall only require a minimal number of changes to the RA.

D. OPERATIONAL CONSTRAINTS
The design of the RA support places the following constraints on the user

operations:

• The user must use a uniform booting and login sequence as described
above in Section B. This sequence is necessary for the RA mechanism to
be properly initialized.

• The RA can only be invoked via a web interface.

E. ASSUMPTIONS
The following assumptions apply to the design of the RA support:

• Applications on the MLS server have been ported to provide RA support.

• Remote applications can only access the MLS LAN via the RAPSKT
interface provided by the MYSEA trusted code.

F. REQUIREMENTS OVERVIEW

1. Trusted Remote Session Server (TRSS)
The user logs in to the MLS server at a session level and any RAs that the user

runs should also run at the same level. However, as discussed in Chapter II, the XTS-400

has privileged TCP/IP ports that can only be accessed by processes running with the

network user identifier. In addition, a process also needs to run at the level of the MLS

LAN in order to access the network interface card between the MYSEA server and

clients. This creates the necessity for a new trusted process on the server which allows

the RA to communicate with the network interface card and access the privileged ports.

The name of this new process is the Trusted Remote Session Server (TRSS). The TRSS

provides a customized programming interface to allow the RA to communicate through

the TRSS with local MLS servers, remote MLS servers and single-level RA servers.

To minimize the number of changes necessary to the RA implementation, the

customized communication interface needs to allow the RA to make function calls using

the same parameters used by the normal socket library function calls. This new

communications interface is called the remote application pseudo-socket (RAPSKT).

The TRSS manages all remote application pseudo-sockets for a given TPE and ensures

19

that the RAPSKT used by an RA is associated with the correct user ID/session level pair

for the given TPE. The RAPSKT mechanism enables data to be passed back and forth

between the RA Process and TRSS Process.

The TRSS also prevents the RA from making connections to peers that do not

have the same session level as the RA. For each request, the TRSS needs to control

access to peers by comparing the level of the peer with the level of the RA. This requires

a static configuration table containing a list of authorized peers along with corresponding

session levels. If the peer is another TPE, the TRSS consults the existing User Database

instead of the static table.

The TRSS must assign each RA connection a unique identifier associated with a

user ID/session level. This allows the SSS Parent to determine when an incoming

connection request is coming from an RA.

The TPS Child Process needs to have a means of terminating the TRSS Parent

Process when a user logs out or changes session levels. Therefore, a signal mechanism is

necessary to allow asynchronous termination signals to be sent from the TPS Child

Process to the TRSS Parent Process.

2. Remote Application (RA)
All remote applications must be modified to communicate with the clients via the

RAPSKT interface. The RA must be able to notify the TRSS when the RA needs to

make a socket library function call. In addition, the TRSS Process needs to be able to

terminate the remote applications that are not closed before a user logs out of the system

or changes session levels. Therefore, some type of signaling mechanism is necessary for

the RA.

In addition, a signal mechanism is required for the RA to send signals to the

TRSS. However, the RA cannot use the normal signal mechanism to communicate with

the TRSS. The RA must run at the session level of the logged in TPE and, therefore, the

RA is not authorized to send signals to the TRSS with the normal mechanism. An

alternate signal mechanism, discussed in Chapter IV, must be designed to handle this

.

20

To satisfy the need for the MLS server to support both Unix/Linux and Microsoft

Windows clients and allow the user to launch RAs from the client, a web browser can be

used to present the user with a list of possible RAs. A Common Gateway Interface (CGI)

can then be used to start the RA itself.

3. Modification to Existing Modules
In order to appropriately bind the remote application to the authenticated user’s

session, the RAPSKT needs to be associated with the user ID/session level as well as

with the TRSS and RA. This allows the RA to find the TRSS that it needs to

communicate with and to find the RAPSKT that will be used for the communication.

This binding needs to take place after a user logs into the MLS server, thus, from the

RAPSKT perspective, the TPS Child Process’s involvement in the RA mechanism is

RAPSKT Database management.

The TRSS needs to be started by an existing process. Since the TPS Child

Process is created after a user logs into the system, it makes sense for the TPS Child

Process to create the TRSS. The TRSS then handles remote application requests from the

user.

The SSS Parent also now needs to be able to determine if a connection request is

coming from a remote application or from a user logged into a TPE. This information

allows the SSS Parent to correctly determine where packets need to go.

G. FUNCTIONAL REQUIREMENTS
The following lists the functional requirements that the TRSS, RA, TPS and SSS

Processes are to provide for RA support on the MLS server:

Trusted Remote Session Server (TRSS):

• The TRSS shall provide access to the network interface card for RAs by
performing socket library function calls.

• The TRSS shall implement a RAPSKT interface used for communications
between the TRSS and RA.

• The TRSS shall control requests for connection to peers (i.e., multilevel
servers, single level servers and TPEs) from the RA

.

21

• The TRSS shall assign unique identifiers for each remote connection made
by the RA and associate it with the user ID/session level, and remove all
outstanding remote connections after a user logs out or changes session
levels.

• A signaling mechanism shall be available for the TRSS to send signals to
the RA and receive signals from the TPS Child and RA.

Remote Application (RA):

• The network related functions of the RA shall be modified to use the
RAPSKT interface only for the MLS LAN side.

• A Common Gateway Interface (CGI) shall be used to start each RA.

• A signaling mechanism shall be available for the RA to send signals to the
TRSS and receive signals from the TRSS.

Additional Requirements:

• The TPS Child shall start the TRSS after a user logs in. The TPS Child
shall initiate cleanup for the previous session level and start a new TRSS
when the user changes session levels. The TPS Child shall initiate
cleanup when a user logs out.

• The TPS Child shall assign a RAPSKT Database to be used by the TRSS
and RAs created for a user ID/session level.

• The SSS Parent shall be able to verify connections from remote
application and TPEs.

• The RA support shall be designed to function with the existing trusted
code on the MLS server including the Secure Session Server (SSS), the
Trusted Path Server (TPS) and all related modules summarized in Chapter
II.

The next chapter will discuss the high-level design of the RA support that satisfies

these requirements.

22

THIS PAGE INTENTIONALLY LEFT BLANK

23

IV. REMOTE APPLICATION SUPPORT HIGH-LEVEL DESIGN

A. INTRODUCTION
This chapter discusses the design process, the high-level design and the reasoning

behind the various design decisions. The discussion starts with a description of the

overall design and the concept of the remote application pseudo-socket (RAPSKT)

interface. The chapter continues with a description of the new database modules starting

with database initialization, moving on to an overview of how the databases are used and

finishing with a description of each individual database. The third section of the chapter

describes the new process modules and the changes to the remote application (RA)

needed to run a multilevel secure (MLS) server. The next part of the chapter contains

details regarding which socket library function calls are supported in the current design.

Finally, there is a discussion on modifications to pre-existing modules necessary to

support this design.

B. METHODOLOGY
Before starting to write the detailed specification, it was first necessary to

research some background information. This started with a review of the particulars of

programming on the XTS-400 in order to determine which system function calls would

need to be used in the specification. Some study was necessary to learn the system

commands on the XTS-400 system as well as the details of writing and compiling

programs on the system. Previous research related to the project, including the existing

design specification for the code currently implemented, was also reviewed.

The design phase used an iterative process. The high-level design was first

written and then several weekly meetings were used to review all high-level design

decisions being made. The high-level design was then revised and the meetings

continued until the high-level design was finalized.

Following completion of the high-level design, it was time to move on to the low-

level design portion of the specification. Several modules were written at a time. After

review by the design team, there were several meetings to go over any problems with the

low-level design specification. This iterative process was continued through all modules.

24

Several times a fundamental problem was found with the high-level design, which made

it necessary to first revise the high-level design before continuing.

C. DESIGN OVERVIEW
The figure below depicts the process structure for remote application (RA)

support. New processes are shaded in gray.

Figure 3. Design Overview

When the system first boots, the Trusted Path Server (TPS) Parent Process and

Secure Session Daemon (SSD) are started. The SSD then starts a Secure Session Server

(SSS) for each allowed protocol. The TPS Parent Process handles login requests from

users and creates a TPS Child Process to handle trusted path commands from the users

25

 who log in or change session levels. At this point, the TPS Child Process also starts a

Trusted Remote Session Server (TRSS) Parent Process to handle RA requests for a

particular TPE.

After a user logs into the system, the user opens a web browser on the client to

retrieve a web page with the links to start various RAs. The SSS Parent Process that

handles HTTP requests creates a SSS Child Process for each connection. The SSS Child

Process creates an HTTP daemon (httpd) to service the web request from the user. The

httpd communicates with the client via the SSS Child Process, which can access the

network interface card. A menu of remote applications is displayed in the web browser.

After the user selects the RA to be started, a Common Gateway Interface (CGI) program

starts the execution of the RA Process. The CGI program responds back to the client’s

web browser via the httpd with a 204 status code. This code tells the browser that the

request succeeded, but that there is no new content. The SSS Child Process, httpd and

CGI remain active and wait for additional requests until the connection is terminated or

timeout is reached. The RA makes a request to the TRSS Parent Process for socket

creation. Finally, the TRSS Parent Process creates a TRSS Child Process to allow the

RA Process to communicate with the network interface card via the TRSS Child Process.

A Remote Application Pseudo-Socket (RAPSKT) mechanism allows

communications to take place between the TRSS Child Processes and RA Processes.

Before making a connection with the client, the RA must obtain a RAPSKT from the

TRSS Parent. Subsequent socket calls are handled by the TRSS Child. When the RA

needs to make a socket library function call using a socket, the function call type and any

additional parameters for the function call are entered in the RAPSKT Database. The RA

then waits for a response from the TRSS Child Process after signaling the TRSS Child

Process that a function call needs to be handled. The TRSS Child wakes up and makes

the socket library function call. Upon completion the return values are added to the

RAPSKT Database. The TRSS Child Process then signals the RA that the function call is

complete and goes back to sleep. The TRSS Child Process terminates when all sockets of

the remote application are closed or a termination signal is received from the TRSS

Parent Process.

26

D. NEW DATABASE MODULES
Six new databases have been added to the design to store the information needed

by the various processes. These are the Remote Connection Database, the Remote

Application Pseudo-Socket Map Database, the Remote Application Pseudo-Socket

Database, the Peer Level Database, the Source Address Binding Database and the

Cleanup Database.

The sections below contain high-level descriptions of the databases. Additional

information including module interfaces, constants and the detailed design specification

itself is included in the detailed design specification.

1. Database Initialization
The following table summarizes the location where initialization for each

database takes place:

Database Process Frequency Statically
Configured

Shared
Memory

Allowed Protocols SSD System-Wide
(once on system
startup)

Y N

Allowed Trusted Path
Extension (TPE)

TPS Parent System-Wide Y N

Cleanup (*) TPS Parent System-Wide N Y
Peer Level (*) TPS Parent System-Wide Y Y
PSKT SSS Child Per TPE User/

Session (every
time a user/session
is established)

N Y

PSKT Map TPS Parent System-Wide N N
RAPSKT (*) TRSS Parent Per TPE User/

Session
N Y

RAPSKT Map (*) TPS Parent System-Wide N Y
Remote Connection (*) TPS Parent System-Wide N Y
Source Address
Binding (*)

TPS Parent System-Wide Y Y

User TPS Parent System-Wide N Y
(*) – New Databases (Italics) – Change From Pre-existing Design

Table 2. Database Initialization Summary

27

Two general rules were used to decide where to place the initialization of each of

the new databases. Any system-wide databases not used solely by the SSD would be

initialized in the TPS Parent Process. Any databases specific to a user ID/session level

would be initialized in either the SSS Child Process for servers or TRSS Parent Process

for RAs. The SSS Child Process and TRSS Parent Process both handle communications

for only one user ID/session level. This changed the location of the initialization of the

existing PSKT Map Database which originally took place within the SSD process.

Most databases are stored in shared memory. The shared memory keys used to

find the shared memory segments are included in the detailed design specification.

Statically configured databases are initialized based on administratively-defined data

stored in read-only files. The contents of the Source Address Binding Database and Peer

Level Database do not change during run-time. The contents of the remaining databases

are updated during run-time.

The fact that shared memory is being used requires that the issue of locking be

examined to prevent the possibility of processes reading inconsistent data. Locking will

be discussed below for each individual database. The Semaphore Module discussed in

Chapter II is used to implement the locking.

All databases include a variable which contains the current state of the database.

This variable prevents processes from accessing the database until initialization is

complete.

2. Database Overview
The figure below shows which databases each process accesses after the system

has been initialized. The type of access for each process is also shown in the diagram.

Additional details regarding specific accesses are provided in the sections that follow.

The new processes and databases are shaded in grey.

28

Figure 4. Process / Database Relationships

3. Remote Application Pseudo-Socket (RAPSKT) Map Database
The Remote Application Pseudo-Socket (RAPSKT) Map Database was added to

keep track of the location of the shared memory segment used for communication

between the RA Processes and TRSS Processes. The RAPSKT Map Database maps a

user ID and session level to a shared memory key which is used to find the shared

memory segment that contains a Remote Application Pseudo-Socket Database. The

TRSS Parent Process identifier is also included with each entry.

Three processes use this database. The TPS Child Processes maintain the

database by assigning a shared memory key to a user ID/session level and a TRSS Parent

Process identifier when a user logs in or changes session level. When a user already

logged into the system logs in again from another client at the same session level, the

same shared memory key is used. The TRSS Parent Process and RA Process only have

read access to the database to find which shared memory key they need to use. The

29

TRSS Parent Process identifier is used by the TRSS Parent to find the shared memory

key for the RAPSKT Database described below. The user and session level fields allow

the RA Process to find the same RAPSKT Database since the RA Process has no way of

knowing the TRSS Parent Process identifier. The TRSS Parent Process identifier also

allows the TPS Child Process to determine if a TRSS Parent Process has already been

created for the requested user ID/session level.

The RAPSKT Map Database requires that a lock be obtained for both reading and

writing. The lock prevents two TPS Child Processes from attempting to assign the same

shared memory key to two different user ID/session levels. The lock prevents the

possibility of either the TRSS Parent Process or the RA Process from reading inconsistent

data if the TPS Child Process is rescheduled before it completes filling in an entry in the

database.

4. Remote Application Pseudo-Socket (RAPSKT) Database
The RAPSKT Database is included in the design to allow communications

between the RA Processes and the TRSS Processes. One instance of the database exists

for each logged in user ID/session level. Each entry contains the following fields: call

type, parameter and data buffer, variable length buffer flag, function return value, error

number, in use flag, RA Process identifier, TRSS Child Process identifier and RAPSKT

file descriptor. The call type field is used to specify the type of socket library function

call being made by the RA. This will be described in greater detail in Section F. The two

buffers are used to pass the parameters for the socket library function call being made. In

some cases, the size of the parameter is too large to fit in the buffer included in the

database so a dynamically allocated buffer is created to store the data. The variable

buffer flag is turned on if the variable length buffer is used. The function return value

and error number fields are used by the TRSS Child Process to return the return value for

a function and the error number resulting from an error respectively. The in use flag field

is used to mark RAPSKT Database entries that are currently being used by RAs. The

remote application identifier and TRSS Child Process identifier fields are used to store

the process identifier of the processes using the entry for communications. Finally, the

identifying number for the RAPSKT associated with the socket library function call being

30

made is stored in the RAPSKT file descriptor field. A separate data structure within the

database is used to manage the RAPSKT file descriptors.

The TRSS Parent Processes, TRSS Child Processes and RA Processes all have

read and write access to the database. The RA Processes use the database to make

various socket library function calls using the RAPSKT by passing the function call type

and associated parameters. Additional information on the supported functions is

described in another Section F. The RA Process identifier field allows the RA to find the

correct entry to use for communications. The TRSS Parent Process uses the database to

create a TRSS Child Process for RA making a request for the first time. The TRSS Child

Process uses the database to get the parameter for a socket library function call being

made by a RA Process. It also uses the database to return the function return value and

error number if necessary. The TRSS Child Process identifier field is used by the TRSS

Child Process to find the entry being used for communications with the RA.

The RAPSKT Database only requires a locking mechanism for allocation and

when a RAPSKT is closed or shutdown. During allocation the lock prevents multiple RA

Processes and TRSS Child Processes from allocating the same RAPSKT. The lock for

closing or shutting down a RAPSKT is necessary because of the way RAPSKT file

descriptors are handled. The possibility exists after a fork of the TRSS Child Process that

the same RAPSKT file descriptor could be used by more than one TRSS Child

Process/RA Process pair. Thus it is necessary to ensure that no processes are still using

the RAPSKT file descriptor before freeing it in the RAPSKT file descriptor array.

Otherwise, the database requires no additional locking because the database entries used

by a TRSS Child Process/RA Process pair are not used by any other processes, and the

TRSS Child Process and RA Process are in lock step. The TRSS Child Process and RA

Process signal the other process and wait for a response before continuing their work.

5. Remote Connection Database
The Remote Connection Database is used to bind the remote application’s

connection identifier to a user ID/session level. This connection identifier consists of the

source IP address, source port number, destination IP address and destination port

number. This binding is necessary for the SSS Parent Process to determine if the

31

connection request came from a RA. Otherwise, the SSS Parent will just drop the packet

since it only looks at this database after it checks the User Database.

Both the TRSS Child Process and SSS Parent Process use the database. The

TRSS Child Process adds entries to the database when a RA makes a network connection

and removes entries from the database when the connection is closed. The SSS Parent

Process only has read access and uses the database to check the user ID/session level of a

remote connection when the connection is not made by a user logged in from a TPE.

A lock needs to be obtained for both reading from and writing to the Remote

Connection Database. Since the database is used to check the user ID/session level of a

remote connection, the lock is necessary to prevent the possibility of the SSS Parent

Process reading inconsistent data if the TRSS Child Process does not complete an entry

in the database before being rescheduled. It also prevents a remote connection from not

being found that is in the process of being added to the database or being found that is in

the process of being removed from the database.

6. Peer Level Database
The Peer Level Database is used to keep track of the security level of the peer

system with which the RA communicates. A peer system can be either an MLS system

(e.g., another MYSEA server) or a single-level host. For single level systems, a field

indicating the level of the system is also included. This database provides the means to

identify whether or not a process will be allowed to communicate with a peer based on

the level of the RA Process and the level of the peer system. This information is

necessary to stop a RA from making a remote connection to a peer at a level not allowed

by the security policy. Only the TRSS Child Process requires read access to the database.

The IP address of the peer is used to retrieve the type of system (single or multi level) and

level of single level systems.

The Peer Level Database does not need an additional locking mechanism at this

point beyond the variable that is used to indicate that database initialization is complete.

The information in the database comes from a static file and does not change during

32

runtime. If the database is changed to allow dynamic updating, the locking issue will

have to be re-examined. Suggestions for dynamic updates of this database are described

in Chapter V.

7. Source Address Binding Database
The Source Address Binding Database was the last database module added to the

design after an additional problem was found in the detailed design phase. Some calls

such as connect normally bind the socket to any address before the socket library function

call is made. However, for the case in which the RA’s peer is another MYSEA server,

the remote connection identifier needs to be added to the Remote Connection Database so

that the SSS Parent Process can verify a connection request (resulting from the bind

operation) if it is not coming from a user logged in with a TPE. The socket must be

bound before the remote connection identifier can be added to the Remote Connection

Database. Therefore, a method was needed for the TRSS Child to determine which

source IP address to use for each destination IP address so that the socket can be

appropriately bound. This is accomplished in the Source Address Binding Database.

The TRSS Child Process has read access to the Source Address Binding Database. A

destination IP address, to which a network mask is applied, is used to retrieve the source

IP address.

The Source Address Binding Database does not need an additional locking

mechanism since the information in the database comes from a static file and does not

change during runtime. If the database were to be changed to allow dynamic updating, a

locking mechanism would be required. Suggestions for dynamic update of this database

are described in Chapter V.

8. Cleanup Database
The Cleanup Database is used to keep track of the active SSS Child Processes in

the system. This is necessary because the TPS Child Process needs to initiate cleanup

when a user logs out or changes session levels. The TPS Child Process already knows

the process identifier of the TRSS Parent Process that must be killed, but it needs to have

a way to get a list of SSS Child Processes that are currently running on the system. Each

SSS Child Process is associated with a TPE identifier in the Cleanup Database so the TPS

Child Process can kill all processes associated with a user ID/session level. The SSS

33

Child Processes add their process identifiers to the database when they are created and

remove their process identifier when they are terminated.

The Cleanup Database requires a locking mechanism for both reading and

writing. It is important that TPS Child Processes do not read any inconsistent data from

the database during cleanup since the SSS Child Process identifiers found for the TPE are

signaled to terminate.

There is one possible issue with SSS Child Process cleanup which requires more

work. In the unlikely occurrence that an SSS Child Process has just been created and the

TPE logs out or changes session levels before the SSS Child Process identifier can be

added to the Cleanup Database, the SSS Child Process currently will not be terminated.

This could potentially cause a resource exhaustion condition to occur due to the presence

of too many “zombie” processes.

E. NEW PROCESS MODULES
Three new processes were added to the existing design: the TRSS Parent Process,

the TRSS Child Process and the RA Process. The RA Process runs the RA program that

has been modified (ported) to use the RAPSKT interface. This section provides the high-

level details of these processes. Further information can be found in the detailed design

specification.

1. Trusted Remote Session Server (TRSS)
The TRSS Processes are responsible for handling requests made by the RA

Processes. The work is divided between a parent process and multiple child processes.

a. TRSS Parent Process
The TRSS Parent Process handles socket requests from new RAs for each

user at a specific session level. The following flow diagram shows the high-level flow

for the process:

34

Figure 5. TRSS Parent Process Flow Diagram

As shown in the diagram, the TRSS Parent Process first attaches to all

databases that the process needs access to. The process then gets the shared memory key

that will be used for the RAPSKT Database from the RAPSKT Map Database. The

process uses this key to create and initialize the new RAPSKT Database. If the user

ID/session level has already logged into the system from another TPE, the TRSS Parent

Process will instead attach to a RAPSKT Database which has already been created for the

other TPE. Next a named pipe is created to use for signaling for reasons discussed

below. A normal signal handler is also setup to capture normal signals from the TPS

Child Process. The process then pauses for requests from RA Processes.

When the TRSS Parent gets a request to create a socket for a new remote

connection from the RA Process, the TRSS Parent Process locates a RAPSKT database

entry with the call type set to socket and creates a child process to handle the work of the

RA. The TRSS Parent Process then enters the process identifier of the forked process

35

into the RAPSKT Database. Since the TRSS Parent handles only the first socket function

call and the TRSS Child Processes conducts all additional socket function calls, there

needs to be a method for the TRSS Parent Process to differentiate which socket function

calls in the RAPSKT Database it needs to handle. Therefore, two different socket call

type variables were created for this purpose. After handling the first socket call found,

the TRSS Parent Process will continue to search the remaining entries in the RAPSKT

Database and will handle any additional socket calls found.

The TRSS Parent Process runs at the level of the MLS LAN since the

children it creates must be forked at that level. The XTS-400 requires that all processes

using the MLS LAN network interface card run at this level. The normal kill signaling

function call cannot be used by the RA to signal the TRSS Parent since the RA is not

authorized to signal another process running at a different level. Therefore, an alternate

signaling mechanism is needed to avoid having to use polling, which could make the

processes less efficient. The chosen method uses named pipes and is described below in

Section 3 (Synchronization).

The TRSS Parent Process also needs to have a signal handler to capture

signals sent using the kill function call. This handler is necessary to allow the TPS Child

Process to send a terminate signal to the TRSS Parent Process when a user logs out or

changes session levels. When the signal is captured, a flag is set in TRSS Parent module

data by the signal handler. If the process was paused when the signal was received, the

flag is checked immediately after the process is woken up. The flag is also checked after

the TRSS Parent Process attempts to find another socket call in the RAPSKT Database

and after the work for each socket call is complete. This causes the main processing loop

of the TRSS Parent Process to exit and cleanup of the module to begin.

The TRSS Parent Process requires the MAC/DAC exemption and user

identifier change privileges. The MAC/DAC exemption privilege is necessary to allow a

process running at one level to access data at another level. In the case of the TRSS, both

TRSS Parent and TRSS Child Processes, running at the level of the MLS LAN, must be

exempt from MAC/DAC restrictions so that they can access the RAPSKT Database,

which is associated with a specific user/session level. The TRSS Parent Process also

36

initializes the RAPSKT Database. This requires a change in user identifier in addition to

the MAC/DAC exemption since the TRSS Parent Process is creating the RAPSKT

Database in shared memory.

b. TRSS Child Process
The TRSS Child Process handles all the work for socket library function

call requests made by the RA Process. The diagram below shows the high-level process

flow.

Figure 6. TRSS Child Process Flow Diagram

When the process initially starts, the process attaches to the necessary

databases and creates the socket for the RA Process. The TRSS Child Process then finds

the entry used in the RAPSKT Database for the initial socket call. Once the entry is

found, a named pipe and signal handler are setup as discussed in the TRSS Parent Process

section above. The process then waits for a signal from the RA Process. When the TRSS

Child Process receives a signal from the RA, the TRSS Child Process checks the call type

37

for each entry in the database. For any entry found with a valid socket library function

call, the TRSS Child Process calls the appropriate function handler.

The TRSS Child Process also must run at the level of the MLS LAN in

order to allow communications with the TPE. However, this creates a signaling problem

between the remote application process and TRSS Child Process. The same signaling

mechanism used in the TRSS Parent Process is used for the RA to signal the TRSS Child

Process. However, when the TRSS Child Process needs to send a signal back to the RA,

the normal signaling mechanism can be used because the TRSS Process is authorized to

signal other processes running at different levels.

The TRSS Child Process also needs a signal handler to capture

termination signals. It functions in the same way as the signal handler in the TRSS

Parent Process. The flag set in TRSS Child module data is checked immediately after the

process wakes up from pausing and after each socket library function call is handled.

The TRSS Child Process also needs the MAC/DAC exemption privilege

for the same reason as the TRSS Parent Process.

2. Remote Application (RA)
Each client application that runs on the MLS server must have the source code

modified to use the RAPSKT interface. Code must be added so that the shared memory

key for the RAPSKT Database is first obtained from the RAPSKT Map Database so that

the RA Process can attach to the shared memory. All network related function calls and

the fork function call must also be changed to use the interface provided in the RAPSKT

Module.

3. Synchronization
When the TPS Child Process creates a TRSS Parent Process, the new process first

needs to retrieve the shared memory key that will be used for its RAPSKT Database. It is

possible that the TRSS Parent Process may try to retrieve this value before the TPS Child

Process has a chance to fill in the field in the RAPSKT database. Therefore, the TRSS

Parent Process will need to loop until its process identifier can be found in the database or

until a timeout is reached causing an error.

38

The RA is in lock step with the TRSS Child and Parent Processes. Whenever the

RA wants to create its first RAPSKT, the RA Process signals the TRSS Parent Process

before pausing. The TRSS Parent Process then creates a TRSS Child Process to handle

the actual socket function call. When the RA wants to make some other socket library

function calls including subsequent socket calls, the RA Process signals the TRSS Child

Process before pausing. The RA then waits for a response from the TRSS Processes

before continuing. When the TRSS Child Process completes the socket library function

call, it signals the RA.

A separate named pipe mechanism is used to send signals from the RA to each

TRSS Parent Process or TRSS Child Process. When the TRSS Parent Process starts, the

TRSS Parent creates a named pipe with a file name appended with its process identifier.

The TRSS Parent Process then pauses by calling select on the file descriptor of the named

pipe, waiting for a RA Process to write to the file. When the RA Process first accesses

the RAPSKT Database, the RA looks up the named pipe with the TRSS Parent Process

identifier in the RAPSKT Map Database for a specific user ID/session level and opens it.

When the RA needs to create its first socket, the RA writes to the named pipe to signal

the TRSS Parent Process which spawns a TRSS Child Process. This TRSS Child Process

creates another named pipe with a file name appended with its process identifier. The

RA uses this new named pipe to send any further signals to the TRSS Child Process. The

TRSS Child Process uses the normal signal mechanism to signal the RA and uses the

select call on the file to wait for signals from the RA.

F. SUPPORTED SOCKET FUNCTIONS
The table on the next page contains a list of socket library function calls that can

be made by the RA Process. In addition there is also a pseudo-fork function

(rapskt_fork). This is necessary to emulate the socket property of the fork function call.

Otherwise, the RAPSKT used for communications would not be copied to the child

process.

 There were two choices in the design regarding where to put the actual socket

calls and policy checking for the various functions. All of the work could be placed in

the RAPSKT Module with the TRSS Processes doing nothing except checking for the

type of call and calling the appropriate handler function in the RAPSKT Module. The

39

other possibility was to make the RAPSKT Module a means to pass the function

parameters to the TRSS Processes and then let handlers in the process module do the

actual socket call and policy checking. The second option was selected because no

process other than the TRSS Child Process needs to know about the actual socket since

only the TRSS Child Process can communicate directly with the network interface card.

Socket Call RAPSKT Call Limitation
accept rapskt_accept none
bind rapskt_bind none
close rapskt_close none
connect rapskt_connect none
fcntl rapskt_fcntl Limited command types
getpeername rapskt_getpeername none
getsockname rapskt_getsockname none
getsockopt rapskt_getsockopt none
ioctl rapskt_ioctl Limited command types.
listen rapskt_listen none
read rapskt_read none
recv rapskt_recv none
recvfrom rapskt_recvfrom none
select rapskt_select Only socket file descriptors

within same RA
setsockopt rapskt_setsockopt none
send rapskt_send none
sendto rapskt_sendto none
shutdown rapskt_shutdown none
socket rapskt_socket none
write rapskt_write none

Table 3. Supported Socket Functions

 The remainder of this section describes the important aspects of the various socket

library function calls. A complete description can be found in the detailed design

specification.

1. Common Characteristics

All of the handlers within the TRSS Child Process share a few common steps.

The function must first retrieve the function parameters from the RAPSKT Database

using the appropriate database. The actual socket file descriptor must then be retrieved

40

from module data for all calls except for fork and socket. Next the actual socket library

function call can be made. The handler then writes the function return value and any

other return values into the RAPSKT Database plus the error number, if the function

returned an error. Any return values that are returned in the data buffer do not need to be

copied since a pointer to the buffer is passed back from the get parameter function.

Finally, the TRSS Child Process signals the RA Process before pausing for another

signal. However, some of these functions require additional steps and checks.

2. Peer Level Checks
Any socket library function calls that access a peer must first check the level of

the peer before allowing the socket library function call to proceed. The session level of

the RA Process is compared to the value retrieved from the Peer Level Database. This

check is necessary for accept, connect, recvfrom and sendto. If the peer’s IP address is

not included in the Peer Level Database, the handler checks to see whether the peer

happens to be a logged in TPE and then verifies the session level if it is a logged in TPE.

3. Explicit Binding
The socket library function calls, which normally would bind the socket to a wild

card address, if the socket has not already been bound, must first be bound to an address

retrieved from the Source Address Binding Database. The reasoning behind this has

already been explained in the Source Address Binding Database Section D above. The

socket library function calls connect and sendto both require this binding.

4. RAPSKT Database Allocation and Deallocation
Several of the socket library function calls perform allocation or deallocation of

RAPSKT Database entries and file descriptors. The accept and socket function calls need

to allocate a RAPSKT file descriptor and a new entry in the database. The close and

shutdown function calls do the exact opposite; they deallocate the database entry and

RAPSKT file descriptor. The handler function in the TRSS Child takes care of the

allocation for the accept call and the RAPSKT function call made by the RA Process

takes care of the allocation for the socket call. The deallocation for the close and

shutdown function calls also takes place in the RAPSKT Module. This is necessary

because the database entry needs to be cleared, but this cannot be done before the return

41

value can be retrieved from the RAPSKT Database by the RA. The fork function call

also needs to allocate additional RAPSKT Database entries, but this will be discussed

below separately.

5. Remote Connection Updates
Any socket library function call that either sets up or closes a remote connection

needs to update the Remote Connection Database. Both the connect and sendto function

calls add new entries to the database. The close and shutdown function calls remove

entries from the database.

There is one possible issue remaining which has not yet been solved for sendto.

The sendto function is normally used for connectionless protocols which do not use close

or shutdown functions. Therefore, the TRSS Child Process will not know when to

remove the remote connection identifiers associated with the sendto function from the

database. When the TRSS Child Process terminates, part of the cleanup process involves

removing all remote connection identifiers that are stored in the TRSS Child’s module

data. However, during runtime the TRSS Child Process will not know when the SSS

Parent Process is finished with the remote connection identifiers, for connectionless

protocols. Hence, it is possible that the Remote Connection Database would be filled

with “zombie” entries while a user is logged into the system. All Remote Connection

Database entries related to a TRSS Child Process are removed from the database when

the process terminates which occurs when a user logs out or changes session levels.

6. Select
The select function call requires special handling. The file descriptors passed as

parameters are RAPSKT file descriptors and need to be converted before the actual

socket library call can be made. After the actual socket call completes, the actual file

descriptor must also be converted back to the RAPSKT file descriptor. The handler

function in the TRSS Child Process performs these conversions.

This RAPSKT version of select can only be used on sockets and only on the

sockets in control of one TRSS Child Process. The normal select function call can be

used for other file descriptors besides sockets. Socket file descriptors and other file

descriptors also cannot currently be combined into one function call, but this is not

something that would normally be done in a network application.

42

7. Variable Parameters
The function calls fcntl and ioctl both have a third parameter which could be of

variable types. The request parameter for ioctl or the command parameter for fcntl

determines the variable type of the third parameter. Thus it is necessary to first check the

command type before copying the third parameter in and out of the RAPSKT Database.

For fcntl the third parameter may not even exist so it is also necessary to use a variable

argument list for copying the parameter into the RAPSKT Database. The corresponding

RAPSKT functions for both of these function calls do not currently implement all

possible command types, but these could easily be added to the design as needed. The

supported command types are included in the detailed design specification.

8. Fork
The function call fork is the one non-socket function call that needs to be included

in the RAPSKT interfaces. The diagram below shows the sequence of events that occurs

when the RA Process calls the rapskt_fork function.

Figure 7. Fork Processing Sequence

43

This sequence is necessary in order to duplicate the RAPSKTs currently used in

the original RA Process in the new RA Process. The RA Process forks first before

signaling the TRSS Child Process to handle the duplication. The RA Process also saves

the new process identifier in the RAPSKT Database so that the TRSS Child Process

knows how to fill in the RA Process identifier field in the RAPSKT Database for new

entries. When the TRSS Child Process receives the signal, it first forks a new TRSS

Child Process which waits for a signal from the original TRSS Child Process. The

original TRSS Child Process does the duplication by using an interface in the RAPSKT

Module including setting the RA Process identifier and TRSS Child Process identifier

fields to the values of the new forked processes. The original TRSS Child Process also

sets the function return value field in the first RAPSKT Database entry for each

RA/TRSS Child pair. Each TRSS Child Process then signals the RA Process that they

will communicate with after the original TRSS Child Process completes the duplication

and signals the new TRSS Child Process.

G. CHANGES TO EXISTING MODULES
The main changes to the existing modules are detailed below. In general, the

cleanup processing within the TPS Child and Parent Processes, SSS Child and Parent

Processes and SSD Process have been improved. Some additional work may still be

required in this area. Further information is available in the detailed design specification.

1. TPS Parent Process / SSD
The initialization of the PSKT Map Database has been moved to the TPS Parent

Process from the SSD. Another change is the enabling of the MAC/DAC exemption

privilege. The TPS now cleans up any left over PSKT Databases and needs to be at the

same level as each PSKT Database before this can be done. This clean up used to occur

in the SSD in the pre-existing design.

2. TPS Child Process / SSS Child Process
Two main changes occurred in the TPS Child Process. Allocation of a PSKT

handle is now the responsibility of the TPS Child Process, not the SSS Child Process.

The TPS Child Process must now create a TRSS Parent Process to handle RA requests.

Before creating the new process, the TPS Child Process first ensures that a TRSS Parent

Process does not already exist for a user ID/session level.

44

3. SSS Parent Process
The SSS Parent checks the user ID/session level of a TPE when it receives a

packet. Now when the TPE identifier cannot be found in the User Database, the SSS

Parent will also try to find the remote connection identifier in the Remote Connection

Database to get the user ID/session level.

4. User Database
One additional interface has been added to the User Module. This new interface

allows the TPS Child Process to determine if a user ID/session level is logged in from

any TPE. This interface is used during cleanup by the TPS Child Process. Since the

same TRSS Child Process is used by all TPEs associated with the same user ID/session

level, the TRSS Child Process is only terminated if a user ID/session level has logged out

from all TPEs.

The TRSS Child Process now also has read access to the database. The TRSS

Child uses the database to determine the security level of a peer that is not included in the

Peer Level Database. This can occur if the peer is a logged in TPE.

H. SUMMARY
The top level design for RA support and the methodology used for the design

have been presented. All databases and processes necessary to provide the support have

been described. The socket library function calls supported have been presented and the

changes to existing modules summarized. The next chapter will present possible future

work and concluding remarks.

45

V. FUTURE WORK AND CONCLUSION

A. INTRODUCTION
This chapter discusses some possibilities for future work and presents the final

thoughts on the project. A detailed design specification is a living document and there is

always room for improvement. Several suggestions are given below for improvements to

the design. A few ideas are also listed for testing the source code after programming is

complete.

B. FUTURE WORK

1. Programming and Testing
The design specifications created for the remote application support contain

sufficient detail that a prototype can be quickly implemented. The testing of this

implementation is also challenging because of the complexity of the RAPSKT library.

a. Code Testing
The test plan for the source code should include both testing for the

individual modules and testing for the overall remote application support. The latter can

be achieved by porting a remote application. However, the means to provide remote

application I/O support on the client are currently limited. Currently, only a web browser

interface is available for the MYSEA user to access read-only data on the MYSEA

server. Eventually a network-based windowing system, such as X Windows, could be

ported to allow the remote applications to redirect its input and output to the MYSEA

client. Meanwhile a simpler testing scheme should be used to test the remote application

support.

Several testing ideas have been discussed as the design progressed. The

Trivial File Transfer Protocol (TFTP) client program could be used for the test

application. An open source TFTP client program would be ported to use the RAPSKT

interface. The modifications to the TFTP client would allow the TFTP client to get a file

from the TFTP server running on the MYSEA client. The user would start the TFTP

client remotely from the MYSEA client by selecting the appropriate option presented by

the CGI program in the web browser as discussed in Chapter IV. Unfortunately the

TFTP client program does not exercise all of the socket function calls currently supported

46

by the RAPSKT interface. Therefore, additional remote applications or other test code

would be required to test all the RAPSKT functions.

b. Stress Testing
The Source Address Database, the Peer Level Database, the RAPSKT

Map Database, the PSKT Map Database, the PSKT Database, the RAPSKT Database, the

User Database, the Remote Connection Database and the Cleanup Database are all

accessed by more than one process. Some testing may be required to determine if there

are any bottlenecks in the system. There should not be any issues with the Source

Address Binding Database and the Peer Level Database because no locking is required

after initialization is complete, but the remaining databases could be potential problems

because locking is required during runtime.

2. Design Improvements
Some design decisions were made to simplify implementation and testing of the

initial prototype. This section contains some suggested changes which could be added to

the project in future work. However, eventually it will be necessary to prove that the

trusted code functions correctly. Adding more complexity to the design increases the

difficulty doing this proof for the trusted code.

a. Configurable Databases
The database modules all currently have a static size which can be

changed by modifying the system wide constants that define the maximum size of each

database. However, in the future, the databases should be modified to allow the

maximum size to be configured by an administrator. These databases should never be

allowed to grow dynamically because of the complexity that would be added to the

trusted code.

b. Source Address Binding Database/Peer Level Database

Both the Source Address Binding Database and Peer Level Database are

loaded into shared memory during initialization from administratively set files. There is

currently no way to modify these databases during runtime. An interface could be added

to each module to allow a new version of the database to be loaded without having to

reboot the system. Each database would need to be locked while being updated. In

addition, the Peer Level Database could be modified to allow IP address ranges in order

47

to better handle access to a range of single level hosts. Otherwise, there would need to be

a large number of entries in the database to handle all allowed host addresses.

c. RAPSKT Map Database/PSKT Map Database
A covert channel storage currently exists in the RAPSKT Map Database

and PSKT Map Database. The remote applications currently all have access to the same

RAPSKT Map Database in order to determine which RAPSKT Database that they need

to use for communications with the appropriate TRSS Child Process. The same applies

for the PSKT Map Database that is used by the application protocol servers to determine

which PSKT Database that the APS Processes need to use for communications with the

appropriate SSS Child Process. One possible solution to mitigate this risk is to partition

the collective map into multiple maps, one for each security level.

d. Cleanup
There are currently two potential cleanup problems. The problem

concerning the existence of SSS Child “zombie” processes has already been discussed in

Chapter IV. In addition the TRSS Child Process normally signals the remote application

process to terminate, but it is possible that a user might be able to log out or change

session levels before a TRSS Child Process can be created. Therefore, the remote

application process would never receive the signal to terminate. Both of these events

should be rare, if they ever occur, but pose a difficult problem that will take considerable

design work.

e. Remote Connection Database
There is also an issue with “zombie” entries in the Remote Connection

Database resulting from the fact that the TRSS Child Process will not know when to

remove the remote connection identifiers associated with the sendto function from the

database as discussed in Chapter IV. However, this problem has a limited effect since all

Remote Connection Database entries related to a TRSS Child Process are removed from

the database when a user logs out or changes session levels.

C. CONCLUSION
This thesis proposes a design for remote client-side application support on the

MYSEA server. A new TRSS Process family has been proposed to accept remote

connection requests for remote applications and perform the actual function calls related

48

to the socket. A RAPSKT interface has been proposed to provide the communications

interface between the TRSS Process and the remote application. The RAPSKT interface

limits the number of changes required in the remote application. The number of new

trusted processes has been limited by placing all new trusted code necessary for remote

application support within the TRSS Process. This allows the remote applications to

remain untrusted.

The design has been divided into well-defined modules. The RAPSKT Module

manages the RAPSKT interface. The Remote Connection Module keeps track of the

current socket connections for remote applications. The RAPSKT Map Module keeps

track of the RAPSKT Database shared memory keys allocated to different user/session

level. The data for peer IP addresses and their associated session level are managed by

the Peer Level Module. The Source Address Binding Module manages the data that

determines which source IP address to use for each destination IP address for sockets that

need to be specifically bound. The TRSS Module accepts and handles remote

connections requests from the remote applications.

This remote application support enhances the usability of the MYSEA MLS

network by providing the much needed capability for MYSEA clients to run remote

applications on the MYSEA MLS server over the MYSEA MLS LAN. This support

provides the MYSEA user the ability to use server-resident client-side applications on the

MYSEA server to access data at different security levels.

Continued research on the MYSEA project could have far reaching benefits for

future military and Department of Defense (DoD) transformation initiatives that require a

high-level of information assurance. This could include initiatives such as the Global

Information Grid (GIG), FORCEnet or Homeland Defense.

49

APPENDIX DESIGN SPECIFICATION

The Monterey Security Architecture (MYSEA) Multilevel Security (MLS) Local

Area Network (LAN) design specification document is an internal document containing

sufficient detail to develop a prototype for the Trusted Path Server (TPS), Trusted Path

Extension (TPE), Secure Session Daemon (SSD), Secure Session Server (SSS), Trusted

Remote Session Server (TRSS), and supporting modules described in Chapters II and IV.

The information in the design specification includes a list of constants (Section 3), a

high-level description of the database and process modules (Sections 4 and 5), a

description of the interfaces for each module (Section 6), and a detailed implementation

specification for each module (Section 9). Appendix A of the design specification

contains the C-language definition of the RAPSKT database.

The following is the table of contents from the detailed design specification

document:

1 Introduction 1
 1.1 Project Description 1
 1.2 Abbreviations 1

2 Requirements 2
 2.1 System Requirements 2
 2.2 Workstation Requirements 2

3 Constants 3
 3.1 Database Maximums 3
 3.2 String Maximums 3
 3.3 Port Numbers 4
 3.4 Shared Memory Keys 4
 3.5 Semaphore Identifiers 5
 3.6 Error Code Bases 5

4 Databases 7
 4.1 Allowed Trusted Path Extension (TPE) Database 7
 4.2 User Database 8
 4.3 Remote Connection Database 9
 4.4 Allowed Protocols Database 10
 4.5 Pseudo-Socket Map Database 11
 4.6 Remote Application Pseudo-Socket Map Database 12
 4.7 Pseudo-Socket Database 13

50

 4.8 Remote Application Pseudo-Socket Database 14
 4.9 Cleanup Database 19
 4.10 Human Readable Labels Database 20
 4.11 Peer Level Database 21
 4.12 Source Address Binding Database 22

5 Processes 23
 5.1 Trusted Path Server (TPS) Process 23
 5.2 Secure Session Daemon (SSD) Process 24
 5.3 Secure Session Server (SSS) Processes 24
 5.4 Trusted Remote Session Server (TRSS) Processes 25
 5.5 Application Protocol Server (APS) Processes 28
 5.6 Remote Application (RA) Processes 28
 5.7 Human Readable Labels (HRL) Administration Tool 29

6 Modules (Managers) 30
 6.1 Allowed TPE Module 30
 6.1.1 Constants 30
 6.1.2 Interfaces 30
 6.2 User Module 31
 6.2.1 Constants 31
 6.2.2 Interfaces 31
 6.3 Remote Connection Module 33
 6.3.1 Constants 33
 6.3.2 Interfaces 34
 6.4 Allowed Protocols Module 35
 6.4.1 Constants 35
 6.4.2 Interfaces 35
 6.5 PSKT Map Module 36
 6.5.1 Constants 36
 6.5.2 Interfaces 36
 6.6 Remote Application PSKT Map Module 37
 6.6.1 Constants 37
 6.6.2 Interfaces 38
 6.7 PSKT Module 39
 6.7.1 Constants 39
 6.7.2 Interfaces 39
 6.8 RAPSKT Module 42
 6.8.1 Constants 42
 6.8.2 Interfaces 44
 6.9 Cleanup Module 50
 6.9.1 Constants 50
 6.9.2 Interfaces 51
 6.10 Human Readable Labels Module 52
 6.10.1 Constants 52
 6.10.2 Interfaces 52

51

 6.11 Peer Level Module 53
 6.11.1 Constants 53
 6.11.2 Interfaces 54
 6.12 Source Address Binding Module 55
 6.12.1 Constants 55
 6.12.2 Interfaces 55
 6.13 Buffer IO Module 57
 6.13.1 Constants 57
 6.13.2 Interfaces 57
 6.14 User Identification and Authentication Module 59
 6.14.1 Constants 59
 6.14.2 Interfaces 59
 6.15 Privileges Module 60
 6.15.1 Constants 60
 6.15.2 Interfaces 60
 6.16 Shared Memory Module 61
 6.16.1 Constants 61
 6.16.2 Interfaces 61
 6.17 Semaphore Module 62
 6.17.1 Constants 62
 6.17.2 Interfaces 62
 6.18 Utility Module 63
 6.18.1 Constants 63
 6.18.2 Interfaces 63
 6.19 TSS Module 64
 6.20 SSD Module 64
 6.21 SSS Module / SSS Utility Module 64
 6.21.1 Constants 64
 6.21.2 Interfaces 64
 6.22 TPE Module 65
 6.23 TPS Module / TPS Utility Module 65
 6.23.1 Constants 65
 6.23.2 Interfaces 65
 6.24 TRSS Parent Module / TRSS Child Module 66
 6.24.1 Constants 66
 6.24.2 Interfaces 66

7 Layering 67

8 Connection Protocols 69
 8.1 TPS to TPE Datagram 69
 8.2 TPE to TPS Datagram 70

9 Detailed Design 71
 9.1 Modules 71
 9.1.1 Allowed TPE Module 71

52

 9.1.2 User Module 76
 9.1.3 Remote Connection Module 92
 9.1.4 Allowed Protocols Module 107
 9.1.5 PSKT Map Module 113
 9.1.6 Remote Application PSKT Map Module 125
 9.1.7 PSKT Module 143
 9.1.8 RAPSKT Module 179
 9.1.9 Cleanup Module 288
 9.1.10 Human Readable Labels Module 299
 9.1.11 Peer Level Module 318
 9.1.12 Source Address Binding Module 328
 9.1.13 Buffer IO Module 336
 9.1.14 User Identification and Authentication Module 354
 9.1.15 Privileges Module 357
 9.1.16 Shared Memory Module 364
 9.1.17 Semaphore Module 372
 9.1.18 Utility Module 382
 9.2 Processes 392
 9.2.1 Trusted Path Server (TPS) Parent Process 393
 9.2.2 Trusted Path Server (TPS) Child Process 397
 9.2.3 Trusted Path Extension (TPE) Process 418
 9.2.4 Secure Session Daemon (SSD) Process 421
 9.2.5 Secure Session Server (SSS) Parent Process 422
 9.2.6 Secure Session Server (SSS) Child Process 424
 9.2.7 Trusted Remote Session Server (TRSS) Parent Process 429
 9.2.8 Trusted Remote Session Server (TRSS) Child Process 434
 9.2.9 Application Protocol (APS) Process 484
 9.2.10 Remote Application Process 485

10 Notes 487

Appendix A RAPSKT Database Structures 488

53

LIST OF REFERENCES

1. Defense Technical Information Center, “Joint Vision 2020”,
http://www.dtic.mil/jointvision/jvpub2.htm, March 2005.

2. Cynthia E. Irvine, Timothy E. Levin, Thuy D. Nguyen, David Shifflett, Jean

Khosalim, Paul C. Clark, Albert Wong, Fancis Afinidad, David Bibighaus, Joseph
Sears, “Overview of a High Assurance Architecture for Distributed Multilevel
Security”, Proceedings of the 5th IEEE Systems, Man and Cybernetics Information
Assurance Workshop, United States Military Academy, West Point, NY, 10-11 June
2004, pg 38-45.

3. XTS-400, STOP 6.0, Trusted Facility Manual, Document ID: XTDOC0004-01,

Getronics Government Solutions, LLC, Herndon, VA, August 2002.

4. XTS-400, STOP 6.0, Programmer’s Guide, Document ID: XTDOC0006-01,

Getronics Government Solutions, LLC, Herndon, VA, August 2002.

5. XTS-400, STOP 6.0, User’s Manual, Document ID: XTDOC0005-01, Getronics

Government Solutions, LLC, Herndon, VA, August 2002.

6. Susan BryerJoyner and Scott D. Heller, Secure Local Area Network Services for a

High Assurance Multilevel Network, Master’s thesis, Naval Postgraduate School,
Monterey, CA, March 1999.

7. David Shifflett, Multi-level Secure Local Area Network Project Design Document

(Draft), Master’s thesis, Naval Postgraduate School, Monterey, CA, October 2001.

8. Bradley R. Eads, Developing a High Assurance Multilevel Mail Server, Master’s

thesis, Naval Postgraduate School, March 1999.

9. Theresa Everette, Examination of the Internet Message Access Protocol (IMAP) to

Facilitate User-Friendly Multilevel Email Management, Master’s thesis, Naval
Postgraduate School, Monterey, CA, September 2000.

10. Evelyn Louise Bersack, Implementation of a Hypertext Transfer Protocol Server on a

High Assurance Multilevel Secure Platform, Master’s thesis, Naval Postgraduate
School, Monterey, CA, December 2000.

11. Emma J. M. Brown, Facilitating Secure Mail in a High Assurance LAN, Master’s

thesis, Naval Postgraduate School, Monterey, CA, September 2000.

54

THIS PAGE INTENTIONALLY LEFT BLANK

55

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Hugo A. Badillo
NSA
Fort Meade, MD

4. George Bieber
OSD
Washington, DC

5. Deborah Cooper

DC Associates, LLC
Roslyn, VA

6. CDR Daniel L. Currie

PMW 161
San Diego, CA

7. CDR James Downey
NAVSEA
Washington, DC

8. Dr. Diana Gant
National Science Foundation
Arlington, VA

9. Richard Hale
DISA
Falls Church, VA

10. LCDR Scott D. Heller

SPAWAR
San Diego, CA

11. Wiley Jones
OSD
Washington, DC

56

12. Russell Jones
 N641

Arlington, VA

13. David Ladd
Microsoft Corporation
Redmond, WA

14. Dr. Carl Landwehr
 National Science Foundation

Arlington, VA

15. Steve LaFountain
 NSA

Fort Meade, MD

16. Dr. Greg Larson
IDA
Alexandria, VA

17. Penny Lehtola
NSA
Fort Meade, MD

18. Ernest Lucier
Federal Aviation Administration
Washington, DC

19. CAPT Sheila McCoy
Headquarters U.S. Navy
Arlington, VA

20. Dr. Vic Maconachy

NSA
Fort Meade, MD

21. Doug Maughan

Department of Homeland Security
Washington, DC

22. Dr. John Monastra
Aerospace Corporation
Chantilly, VA

57

23. John Mildner
SPAWAR
Charleston, SC

24. Keith Schwalm

Good Harbor Consulting, LLC
Washington, DC

25. RADM Joseph Singer
NETWARCOM
Fort Meade, MD

26. Dr. Ralph Wachter
ONR
Arlington, VA

27. David Wirth
N641
Arlington, VA

28. Daniel Wolf
 NSA

Fort Meade, MD

29. James Yerovi
 National Reconnaisance Organization
 Chantilly, VA

30. CAPT Robert Zellmann

CNO Staff N614
Arlington, VA

31. Dr. Cynthia E. Irvine
Naval Postgraduate School
Monterey, CA

32. Thuy Nguyen
Naval Postgraduate School
Monterey, CA

33. LT Robert C. Cooper
Naval Postgraduate School
Monterey, CA

